
Introduction
Giant resonances are collective excitations of nuclei between 10 and 40 MeV. They are 
classified by their multipolarity L, Spin S, and Isospin T. In this work, we examine the 
Isoscalar (T=0) Giant Resonances in 94Mo of L=0, 1, 2, and 3. The strength functions of 
these resonances are calculated within Hartree-Fock based Random Phase 
Approximation (HF RPA) using thirty-three common Skyrme interactions. The centroid 
energies are plotted against Nuclear Matter (NM) properties in hopes of constraining 
them.

Nuclear Equation of State
The nuclear equation of state gives the binding energy per nucleon E[ρp,ρn] as a function 
of the proton density ρp and neutron density ρn. Most nuclei we study are close to 
symmetric, so we split up our functional based on symmetry. 

,                            ,

where E0[ρ]  is the energy per nucleon of symmetric nuclear matter and Esym[ρ] is the 
symmetry energy. We know experimentally that E0[ρ] has a minimum at ρ0 ≈ 0.16fm-3

with an energy per nucleon of about 16MeV. We can expand both of these functions as 
Taylor series of nuclear density around ρ0. We name the expansion coefficients as 
properties of NM [1].
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The Isoscalar Giant Monopole Resonance (L=0) (ISGMR) is sensitive to K, the 
incompressibility coefficient of nuclear matter. The ISGMR is a breathing mode that acts 
similarly to a simple harmonic oscillator. It is possible that, with computation, we may find 
that other resonances are sensitive to other NM properties.

Hartree-Fock Method
The Hartree-Fock method assumes that we can treat all of the particles as moving 
independently in a central potential. The total nuclear wave function can then be written 
as a Slater determinant of single particle wave functions           [4].

The energy expectation value              is then minimized for a general Hamiltonian of the 
form                                 , where Vij is the two-body interaction. To minimize this 
expectation value, we vary the single particle states. Varying the wave functions and 
setting the varied expectation value to zero gives the Hartree-Fock equations.

,

,

,
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Here ei are the single particle energies. These equations are solved iteratively to obtain 
energies, the central potential, and the single particle wave functions.

There are many different interactions that can be used to model the nuclear force. 
Skyrme interactions are commonly used. They are momentum dependent contact 
interactions with ten parameters xi, ti, α, and W0 that are determined by a fit to 
experimental data.

There are hundreds of published sets of values for these parameters and each one gives 
new values of NM properties. We will plot our strength functions for the KDE0 interaction 
in particular, within the Hartree-Fock (HF) based Random Phase Approximation (RPA).
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Strength Functions

Our calculations are consistent with the currently accepted value of K = 240 ± 20 MeV. 
There also exists a preference for m*/m = 0.8 ± 0.1. No other nuclear matter properties 
could be determined with a reasonable uncertainty from this data.

The strength function of the monopole has a high energy peak that is not reproduced by the 
calculations. 

Conclusions
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All of our data comes from scattering experiments. A scattering operator FL with radial and 
angular dependence maps the ground state to excited states. We define the strength 
function S(E) below. The sum over j sums over all RPA states, and      is the HF RPA ground 
state,

.

The scattering operator for isoscalar resonances is written below. The form of f(r) for the 
different resonances can be found in [1],

.

We can take energy moments mk of this function and define the centroid energy, Ecen,

,                              .

In figure 1, the experimental strength functions [2] are plotted with a Gaussian fit (red) along 
with the calculated KDE0 strength functions (purple). Each one corresponds to a resonance 
of different L: E0 represents L0, E1 represents L1, and so on. In order to isolate the 
Isoscalar Giant Resonances, the limits of the mk integral are chosen carefully. They are 9-
40 MeV for the ISGMR and Isoscalar Giant Quadrupole Resonance (ISGQR), 20-36 MeV 
for the high part of Isoscalar Giant Dipole Resonance (ISGDR), and 14-40 MeV for the High 
Energy Octopole Resonance (HEOR).

In figure 2, we plot the centroid energies of the multipoles in 94Mo against K, m*, and J from 
thirty-three Skyrme interactions found in [3]. The dotted lines show experimental 
uncertainties [2]. The ISGMR has a correspondence with K, but it this correspondence 
weakens as L increases. In the opposite way, m* correspondence becomes stronger for 
higher L. The symmetry energy J has no obvious correspondence with any of these 
resonances.
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Figure 2. Centroid energies for different multipolarities L in 94Mo are plotted against K, m*/m, and J. 
The dotted lines show experimental uncertainties [2]. 
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Figure 1. Experimental strength functions of each multipolarity in 94Mo are given a 
Gaussian fit (red) and plotted with the KDE0 strength function (purple). Data is taken 
from [2].
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